Normal view MARC view ISBD view

Formulation explicite en tétraèdres linéaires pour la modélisation 2D et 3D de l'UGV / par Pascal de Micheli ; sous la direction de Katia Mocellin et François Bay

Auteur principal : Micheli, Pascal de, 1982-...Auteur secondaire : : Mocellin, Katia, Directeur de thèse;Bay, François, 19..-...., Directeur de thèseAuteur secondaire collectivité : École nationale supérieure des mines, Paris, Organisme de soutenancePublication : 2009Description : 1 vol. (159 p.) ; 30 cmClassification : 530Résumé : Cette thèse a pour but de proposer une formulation EF adaptée à la modélisation de l'usinage à grande vitesse en pointe d'outil. La simulation doit pouvoir détecter les phénomènes extrêmement localisés qui peuvent apparaître, avec des temps de calcul raisonnables. L'implémentation est réalisée à l'aide de la librairie EF CimLib, offrant un remailleur adaptatif robuste non structuré et permettant le calcul massivement parallèle. Le travail se décompose en deux parties. La première consiste à développer, implémenter et valider une formulation de type explicite non sensibles au locking volumique, permettant l'utilisation d'algorithmes de remaillage non structurés robustes. Deux formulations sont comparées en dynamique rapide: une semi-explicite, basée sur des éléments tétraédriques mixtes avec stabilisation bulle et une explicite, basée sur des éléments tétraédriques linéaires modifiés. La seconde partie consiste à appliquer la formulation explicite, retenue pour son efficacité, au cas particulier de l'usinage à grande vitesse. Une résolution thermique est implémentée et couplée à la mécanique. Des simulations thermomécaniques de coupe orthogonales 2D de Ti6Al4V sont réalisées. Les résultats obtenus sont en très bonne adéquation avec la littérature, et permettent d'importants gains de temps de calcul. L'initiation et la propagation de la bande de cisaillement dans le copeau peuvent être analysés précisément. Un algorithme de R-Adaptation surfacique a été ajouté afin d'étendre ces résultats en 3D. On peut alors se rapprocher de la réalité industrielle du procédé sans perdre en précision; The aim of this work is to present a FE formulation particularly adapted to the simulation of high speed machining at the cutting edge level. The modelling should be able to detect the very local phenomena that could occur, with reasonable computation times. This code is implemented using the FE library CimLib, which offers robust adaptive non-structured remeshers and allows massive parallel computing. This work can be split in two parts. The first one consist in developing, implementing and validating an explicit type formulation, which is not sensitive to volumetric locking and allows using robust adaptive non-structured remeshers. Two formulations have been compared in the field of rapid dynamics: a semi-explicit one with mixed tetrahedral elements and RFB stabilization and an explicit one with modified linear tetrahedral elements. The second part of the work consists in applying the explicit formulation presented above to high speed machining. A thermal solver is implemented and coupled to the mechanical one. 2D micro machining simulations of Ti6Al4V orthogonal cutting are performed. Results are in very good agreement with literature, and important calculation time sparing is observed. The initiation and propagation of the adiabatic shear band in the chip can be analyzed in details. A R-adaptation procedure has been added to the normal remeshing procedure in order to be able to extend those results in 3D. We can then get closer of the real industrial processes, without loosing precision.Thèse : .Sujet - Nom d'actualité : Usinage à très grande vitesse -- Thèses et écrits académiques ;Simulation, Méthodes de -- Thèses et écrits académiques ;Éléments finis, Méthode des -- Thèses et écrits académiques ;Cisaillement (mécanique) -- Thèses et écrits académiques ;Modèles mathématiques -- Thèses et écrits académiques Sujet : Usinage grande vitesse ;Simulation bidimensionnelle ;Simulation tridimensionnelle ;Séparation copeau ;Bande cisaillement ;Modèle numérique ;Méthode élément fini
Current location Call number Status Notes Date due Barcode
Bib. Paris
160.161 CCL.TH.1251 Available Thèse en ligne EMP51691D
Bib. Paris
160.162 CCL.TH.1251 Available Thèse en ligne EMP51692D
Sophia Antipolis
EMS T-CEMEF-0360 Sur demande Thèse en ligne EMS T-CEMEF-0360

Thèse de doctorat Mécanique numérique Paris, ENMP 2009

Cette thèse a pour but de proposer une formulation EF adaptée à la modélisation de l'usinage à grande vitesse en pointe d'outil. La simulation doit pouvoir détecter les phénomènes extrêmement localisés qui peuvent apparaître, avec des temps de calcul raisonnables. L'implémentation est réalisée à l'aide de la librairie EF CimLib, offrant un remailleur adaptatif robuste non structuré et permettant le calcul massivement parallèle. Le travail se décompose en deux parties. La première consiste à développer, implémenter et valider une formulation de type explicite non sensibles au locking volumique, permettant l'utilisation d'algorithmes de remaillage non structurés robustes. Deux formulations sont comparées en dynamique rapide: une semi-explicite, basée sur des éléments tétraédriques mixtes avec stabilisation bulle et une explicite, basée sur des éléments tétraédriques linéaires modifiés. La seconde partie consiste à appliquer la formulation explicite, retenue pour son efficacité, au cas particulier de l'usinage à grande vitesse. Une résolution thermique est implémentée et couplée à la mécanique. Des simulations thermomécaniques de coupe orthogonales 2D de Ti6Al4V sont réalisées. Les résultats obtenus sont en très bonne adéquation avec la littérature, et permettent d'importants gains de temps de calcul. L'initiation et la propagation de la bande de cisaillement dans le copeau peuvent être analysés précisément. Un algorithme de R-Adaptation surfacique a été ajouté afin d'étendre ces résultats en 3D. On peut alors se rapprocher de la réalité industrielle du procédé sans perdre en précision

The aim of this work is to present a FE formulation particularly adapted to the simulation of high speed machining at the cutting edge level. The modelling should be able to detect the very local phenomena that could occur, with reasonable computation times. This code is implemented using the FE library CimLib, which offers robust adaptive non-structured remeshers and allows massive parallel computing. This work can be split in two parts. The first one consist in developing, implementing and validating an explicit type formulation, which is not sensitive to volumetric locking and allows using robust adaptive non-structured remeshers. Two formulations have been compared in the field of rapid dynamics: a semi-explicit one with mixed tetrahedral elements and RFB stabilization and an explicit one with modified linear tetrahedral elements. The second part of the work consists in applying the explicit formulation presented above to high speed machining. A thermal solver is implemented and coupled to the mechanical one. 2D micro machining simulations of Ti6Al4V orthogonal cutting are performed. Results are in very good agreement with literature, and important calculation time sparing is observed. The initiation and propagation of the adiabatic shear band in the chip can be analyzed in details. A R-adaptation procedure has been added to the normal remeshing procedure in order to be able to extend those results in 3D. We can then get closer of the real industrial processes, without loosing precision

Powered by Koha