Normal view MARC view ISBD view

Filtres de Kalman étendus reposant sur une variable d'erreur non linéaire avec applications à la navigation / Axel Barrau ; sous la direction de Silvère Bonnabel

Auteur principal : Barrau, Axel, 1988-....Auteur secondaire : : Bonnabel, Silvère, 1981-..., Directeur de thèse, Membre du juryAuteur secondaire collectivité : École nationale supérieure des mines, Paris, Organisme de soutenance;Ecole doctorale Sciences des métiers de l'ingénieur, Paris, Ecole doctorale associée à la thèse;Centre de robotique, Paris, Laboratoire associé à la thèsePublication : 2015Dewey: 621.382 2Classification : 620Résumé : Cette thèse étudie l'utilisation de variables d'erreurs non linéaires dans la conception de filtres de Kalman étendus (EKF). La théorie des observateurs invariants sur les groupes de Lie sert de point de départ au développement d'un cadre plus général mais aussi plus simple, fournissant des variables d'erreur non linéaires assurant la propriété nouvelle et surprenante de suivre une équation différentielle (partiellement) linéaire. Ce résultat est mis à profit pour prouver, sous des hypothèses naturelles d'observabilité, la stabilité de l'EKF invariant (IEKF) une fois adapapté à la classe de systèmes (non-invariants) introduite. Le gain de performance remarquable par rapport à l'EKF classique est illustré par des applications à des problèmes industriels réels, réalisées en partenariat avec l'entreprise SAGEM.Dans une seconde approche, les variables d'erreurs sont étudiées en tant que processus stochastiques. Pour les observateurs convergeant globalement si les bruits sont ignorés, on montre que les ajouter conduit la variable d'erreur à converger en loi vers une distribution limite indépendante de l'initialisation. Ceci permet de choisir des gains à l'avance en optimisant la densité asymptotique. La dernière approche adoptée consiste à prendre un peu de recul vis-à-vis des groupes de Lie, et à étudier les EKF utilisant des variables d'erreur non linéaires de façon générale. Des propriété globales nouvelles sont obtenues. En particulier, on montre que ces méthodes permettent de résoudre le célèbre problème de fausse observabilité créé par l'EKF s'il est appliqué aux questions de localisation et cartographie simultanées (SLAM).; The present thesis explores the use of non-linear state errors to devise extended Kalman filters (EKFs). First we depart from the theory of invariant observers on Lie groups and propose a more general yet simpler framework allowing to obtain non-linear error variables having the novel unexpected property of being governed by a (partially) linear differential equation. This result is leveraged to ensure local stability of the invariant EKF (IEKF) under standard observability assumptions, when extended to this class of (non-invariant) systems. Real applications to some industrial problems in partnership with the company SAGEM illustrate the remarkable performance gap over the conventional EKF. A second route we investigate is to turn the noise on and consider the invariant errors as stochastic processes. Convergence in law of the error to a fixed probability distribution, independent of the initialization, is obtained if the error with noise turned off is globally convergent, which in turn allows to assess gains in advance that minimize the error's asymptotic dispersion. The last route consists in stepping back a little and exploring general EKFs (beyond the Lie group case) relying on a non-linear state error. Novel mathematical (global) properties are derived. In particular, these methods are shown to remedy the famous problem of false observability created by the EKF if applied to simultaneous localization and mapping (SLAM), which is a novel result..Thèse : .Sujet - Nom d'actualité : Kalman, Filtrage de -- Thèses et écrits académiques ;Traitement du signal -- Thèses et écrits académiques Ressource en ligneAccès au texte intégral | Accès en ligne | Accès en ligne List(s) this item appears in: typdoc thèse à rajouter
Current location Call number Status Notes Date due Barcode
En ligne
https://pastel.archives-ouvertes.fr/tel-01344622 En ligne Thèse en ligne

Titre provenant de l'écran-titre

Ecole(s) Doctorale(s) : Ecole doctorale Sciences des métiers de l'ingénieur (Paris)

Partenaire(s) de recherche : Centre de robotique (Paris) (Laboratoire)

Autre(s) contribution(s) : Pierre Rouchon (Président du jury) ; Silvère Bonnabel, Brigitte D'Andrea-Novel, Xavier Bissuel, Jay Farrell (Membre(s) du jury) ; Pascal Morin, Christophe Prieur (Rapporteur(s))

Thèse de doctorat Informatique temps réel, robotique et automatique Paris, ENMP 2015

Cette thèse étudie l'utilisation de variables d'erreurs non linéaires dans la conception de filtres de Kalman étendus (EKF). La théorie des observateurs invariants sur les groupes de Lie sert de point de départ au développement d'un cadre plus général mais aussi plus simple, fournissant des variables d'erreur non linéaires assurant la propriété nouvelle et surprenante de suivre une équation différentielle (partiellement) linéaire. Ce résultat est mis à profit pour prouver, sous des hypothèses naturelles d'observabilité, la stabilité de l'EKF invariant (IEKF) une fois adapapté à la classe de systèmes (non-invariants) introduite. Le gain de performance remarquable par rapport à l'EKF classique est illustré par des applications à des problèmes industriels réels, réalisées en partenariat avec l'entreprise SAGEM.Dans une seconde approche, les variables d'erreurs sont étudiées en tant que processus stochastiques. Pour les observateurs convergeant globalement si les bruits sont ignorés, on montre que les ajouter conduit la variable d'erreur à converger en loi vers une distribution limite indépendante de l'initialisation. Ceci permet de choisir des gains à l'avance en optimisant la densité asymptotique. La dernière approche adoptée consiste à prendre un peu de recul vis-à-vis des groupes de Lie, et à étudier les EKF utilisant des variables d'erreur non linéaires de façon générale. Des propriété globales nouvelles sont obtenues. En particulier, on montre que ces méthodes permettent de résoudre le célèbre problème de fausse observabilité créé par l'EKF s'il est appliqué aux questions de localisation et cartographie simultanées (SLAM).

The present thesis explores the use of non-linear state errors to devise extended Kalman filters (EKFs). First we depart from the theory of invariant observers on Lie groups and propose a more general yet simpler framework allowing to obtain non-linear error variables having the novel unexpected property of being governed by a (partially) linear differential equation. This result is leveraged to ensure local stability of the invariant EKF (IEKF) under standard observability assumptions, when extended to this class of (non-invariant) systems. Real applications to some industrial problems in partnership with the company SAGEM illustrate the remarkable performance gap over the conventional EKF. A second route we investigate is to turn the noise on and consider the invariant errors as stochastic processes. Convergence in law of the error to a fixed probability distribution, independent of the initialization, is obtained if the error with noise turned off is globally convergent, which in turn allows to assess gains in advance that minimize the error's asymptotic dispersion. The last route consists in stepping back a little and exploring general EKFs (beyond the Lie group case) relying on a non-linear state error. Novel mathematical (global) properties are derived. In particular, these methods are shown to remedy the famous problem of false observability created by the EKF if applied to simultaneous localization and mapping (SLAM), which is a novel result.

Configuration requise : un logiciel capable de lire un fichier au format : PDF

Powered by Koha