Normal view MARC view ISBD view

Analyse scalaire et tensorielle de la refermeture des porosités en mise forme / Abdelouahed Chbihi ; sous la direction de Pierre-Olivier Bouchard et de Marc Bernacki et de Daniel Humberto Pino Munoz

Auteur principal : Chbihi, Abdelouahed, 1990-...., AuteurAuteur secondaire : : Bouchard, Pierre-Olivier, Directeur de thèse, Membre du jury;Bernacki, Marc, 1978-...., Directeur de thèse, Membre du jury;Pino Munoz, Daniel Humberto, 1986-, Directeur de thèse, Membre du jury;Delannay, Laurent, 1973-...., Président du jury de soutenance;Balan, Tudor, -...., Rapporteur de la thèse;Morel, Franck, 1967-...., chercheur en génie mécanique, Membre du jury;Balland, Pascale, Membre du juryAuteur secondaire collectivité : Université de Recherche Paris Sciences et Lettres, Organisme de soutenance;École doctorale Sciences fondamentales et appliquées, Nice, Ecole doctorale associée à la thèse;Centre de mise en forme des matériaux, Sophia Antipolis, Alpes-Maritimes, Laboratoire associé à la thèse;École nationale supérieure des mines, Paris, Autre partenaire associé à la thèseLangue :de résumé, Français ; de résumé, Anglais.Publication :2018Dewey: 620.11Classification : 620 ; 530Résumé : La présence de porosités dans les lingots métalliques représente un problème majeur dans l’industrie des matériaux. En effet, ces porosités altèrent significativement les caractéristiques mécaniques du matériau (ductilité notamment), et sont des sources d’apparition de défauts en mise en forme ou en tenue en service. Pour éliminer ces porosités, les industriels utilisent souvent des procédés de mise forme à chaud tels que le forgeage ou le laminage, mais il est souvent difficile de définir le taux de déformation à appliquer pour refermer entièrement ces porosités. La modélisation numérique s’avère donc être un outil particulièrement intéressant afin d’étudier l’impact des paramètres procédé sur le taux de refermeture de porosités. Dans ce travail, nous avons développé une méthodologie de calibration basée sur des algorithmes d’optimisation et une base de données de 800 simulations à champ complet sur VER, où les paramètres influents sur la refermeture des porosités sont variés (mécaniques et géométriques). Le premier modèle proposé est un modèle scalaire qui s’affranchit de l’hypothèse de chargement axisymétrique, largement utilisée dans la littérature. Le paramètre de Lode a permis avec l’utilisation de la triaxialité des contraintes de définir l’état de contraintes d’une manière unique. Les comparaisons de ce nouveau modèle à trois autres modèles de refermeture de la littérature montrent le gain de précision de ce nouveau modèle scalaire de refermeture. Le deuxième modèle est un modèle tensoriel adapté aux procédés multipasses grâce à l’analyse de la matrice d’inertie de la porosité. Cette matrice sert pour calculer le volume, la forme et l’orientation de la porosité. Ce modèle a été calibré en utilisant une approche basée sur les réseaux de neurones artificiels. La comparaison avec le modèle scalaire et la modélisation en champ complet a montré un gain en précision jusqu’à 35%. Il s’agit là par ailleurs du premier modèle tensoriel proposé dans la littérature.; The presence of voids in ingots is a major issue in the casting industry. These voids decrease materials properties (in particular ductility) and may induce premature failure during metal forming or service life. Hot metal forming processes are therefore used to close these voids and obtain a sound product. However, the amount of deformation required to close these voids is difficult to estimate.Numerical modeling is an interesting tool to study the influence of process parameters on void closure rate. In this work, an optimization-based strategy has been developed to identify the parameters of a mean-field model based on a database of 800 full-field REV simulations with various loading conditions and voids geometry and orientations. The first void closure model is a scalar model that gets rid of the axisymmetric loading hypothesis considered in most models in the literature. The Lode angle, coupled with the stress triaxiality ratio enables to identify the stress state in a unique way. Comparisons of this new model with three other models fromthe literature show the accuracy increase for general loading conditions. In order to address multistages processes, a second model is defined in a tensor version. The ellipsoid void inertia matrix is used to define void’s morphology, orientation and volume. The tensor model predicts the evolution of the inertia terms and its calibration is based on the full-field REV database and on a new Artificial Neural Networks approach. Comparisons were carried out between this tensor model, the scalar model and full-field simulations for multi-stages configurations. These comparisons showed up to 35% accuracy improvement with the tensor model. It is worth mentioning that this is the first attempt to define a void closure tensor model in the literature..Thèse : .Sujet - Nom d'actualité : Porosité -- Modèles mathématiques -- Thèses et écrits académiques Ressource en ligneAccès au texte intégral | Accès en ligne | Accès en ligne
Current location Call number Status Date due Barcode
En ligne
https://pastel.archives-ouvertes.fr/tel-02285942 Available

Titre provenant de l'écran-titre

Ecole(s) Doctorale(s) : École doctorale Sciences fondamentales et appliquées (Nice)

Partenaire(s) de recherche : Centre de mise en forme des matériaux (Sophia Antipolis, Alpes-Maritimes) (Laboratoire), École nationale supérieure des mines (Paris) (établissement de préparation de la thèse)

Autre(s) contribution(s) : Laurent Delannay (Président du jury) ; Pierre-Olivier Bouchard, Marc Bernacki, Daniel Humberto Pino Munoz, Franck Morel, Pascale Balland (Membre(s) du jury) ; Tudor Balan (Rapporteur(s))

Thèse de doctorat Mécanique numérique et Matériaux Paris Sciences et Lettres 2018

La présence de porosités dans les lingots métalliques représente un problème majeur dans l’industrie des matériaux. En effet, ces porosités altèrent significativement les caractéristiques mécaniques du matériau (ductilité notamment), et sont des sources d’apparition de défauts en mise en forme ou en tenue en service. Pour éliminer ces porosités, les industriels utilisent souvent des procédés de mise forme à chaud tels que le forgeage ou le laminage, mais il est souvent difficile de définir le taux de déformation à appliquer pour refermer entièrement ces porosités. La modélisation numérique s’avère donc être un outil particulièrement intéressant afin d’étudier l’impact des paramètres procédé sur le taux de refermeture de porosités. Dans ce travail, nous avons développé une méthodologie de calibration basée sur des algorithmes d’optimisation et une base de données de 800 simulations à champ complet sur VER, où les paramètres influents sur la refermeture des porosités sont variés (mécaniques et géométriques). Le premier modèle proposé est un modèle scalaire qui s’affranchit de l’hypothèse de chargement axisymétrique, largement utilisée dans la littérature. Le paramètre de Lode a permis avec l’utilisation de la triaxialité des contraintes de définir l’état de contraintes d’une manière unique. Les comparaisons de ce nouveau modèle à trois autres modèles de refermeture de la littérature montrent le gain de précision de ce nouveau modèle scalaire de refermeture. Le deuxième modèle est un modèle tensoriel adapté aux procédés multipasses grâce à l’analyse de la matrice d’inertie de la porosité. Cette matrice sert pour calculer le volume, la forme et l’orientation de la porosité. Ce modèle a été calibré en utilisant une approche basée sur les réseaux de neurones artificiels. La comparaison avec le modèle scalaire et la modélisation en champ complet a montré un gain en précision jusqu’à 35%. Il s’agit là par ailleurs du premier modèle tensoriel proposé dans la littérature.

The presence of voids in ingots is a major issue in the casting industry. These voids decrease materials properties (in particular ductility) and may induce premature failure during metal forming or service life. Hot metal forming processes are therefore used to close these voids and obtain a sound product. However, the amount of deformation required to close these voids is difficult to estimate.Numerical modeling is an interesting tool to study the influence of process parameters on void closure rate. In this work, an optimization-based strategy has been developed to identify the parameters of a mean-field model based on a database of 800 full-field REV simulations with various loading conditions and voids geometry and orientations. The first void closure model is a scalar model that gets rid of the axisymmetric loading hypothesis considered in most models in the literature. The Lode angle, coupled with the stress triaxiality ratio enables to identify the stress state in a unique way. Comparisons of this new model with three other models fromthe literature show the accuracy increase for general loading conditions. In order to address multistages processes, a second model is defined in a tensor version. The ellipsoid void inertia matrix is used to define void’s morphology, orientation and volume. The tensor model predicts the evolution of the inertia terms and its calibration is based on the full-field REV database and on a new Artificial Neural Networks approach. Comparisons were carried out between this tensor model, the scalar model and full-field simulations for multi-stages configurations. These comparisons showed up to 35% accuracy improvement with the tensor model. It is worth mentioning that this is the first attempt to define a void closure tensor model in the literature.

Configuration requise : un logiciel capable de lire un fichier au format : PDF

Powered by Koha